Page:EB1911 - Volume 09.djvu/254

From Wikisource
Jump to navigation Jump to search
This page has been validated.
ELECTRON—ELECTROPLATING
237

of 50 to 200 volts by means of a dry pile or voltaic battery, or from a lighting circuit. To facilitate the communication of the charge to the needle, the quartz fibre and its attachments are rendered conductive by a thin film of solution of hygroscopic salt such as calcium chloride. The lightness of the needle enables the instrument to be moved without fear of damaging the suspension. The upper end of the quartz fibre is rotated by a torsion head, and a metal cover serves to screen the instrument from stray electrostatic fields. With a quartz fibre 0.009 mm. thick and 60 mm. long, the needle being charged to 110 volts, the period and swing of the needle was 18 seconds. With the scale at a distance of two metres, a deflection of 130 mm. was produced by an electromotive force of 0.1 volt. By using a quartz fibre of about half the above diameter the sensitiveness was much increased. An instrument of this form is valuable in measuring small alternating currents by the fall of potential produced down a known resistance. In the same way it may be employed to measure high potentials by measuring the fall of potential down a fraction of a known non-inductive resistance. In this last case, however, the capacity of the electrometer used must be small, otherwise an error is introduced.[1]

See, in addition to references already given, A. Gray, Absolute Measurements in Electricity and Magnetism (London, 1888), vol. i. p. 254; A. Winkelmann, Handbuch der Physik (Breslau, 1905), pp. 58-70, which contains a large number of references to original papers on electrometers.  (J. A. F.) 


ELECTRON, the name suggested by Dr G. Johnstone Stoney in 1891 for the natural unit of electricity to which he had drawn attention in 1874, and subsequently applied to the ultra-atomic particles carrying negative charges of electricity, of which Professor Sir J. J. Thomson proved in 1897 that the cathode rays consisted. The electrons, which Thomson at first called corpuscles, are point charges of negative electricity, their inertia showing them to have a mass equal to about 1/2000 that of the hydrogen atom. They are apparently derivable from all kinds of matter, and are believed to be components at any rate of the chemical atom. The electronic theory of the chemical atom supposes, in fact, that atoms are congeries of electrons in rapid orbital motion. The size of the electron is to that of an atom roughly in the ratio of a pin’s head to the dome of St Paul’s cathedral. The electron is always associated with the unit charge of negative electricity, and it has been suggested that its inertia is wholly electrical. For further details see the articles on Electricity; Magnetism; Matter; Radioactivity; Conduction, Electric; The Electron Theory, E. Fournier d’Albe (London, 1907); and the original papers of Dr G. Johnstone Stoney, Proc. Brit. Ass. (Belfast, August 1874), “On the Physical Units of Nature,” and Trans. Royal Dublin Society (1891), 4, p. 583.


ELECTROPHORUS, an instrument invented by Alessandro Volta in 1775, by which mechanical work is transformed into electrostatic charge by the aid of a small initial charge of electricity. The operation depends on the facts of electrostatic induction discovered by John Canton in 1753, and, independently, by J. K. Wilcke in 1762 (see Electricity). Volta, in a letter to J. Priestley on the 10th of June 1775 (see Collezione dell’ opere, ed. 1816, vol. i. p. 118), described the invention of a device he called an elettroforo perpetuo, based on the fact that a conductor held near an electrified body and touched by the finger was found, when withdrawn, to possess an electric charge of opposite sign to that of the electrified body. His electrophorus in one form consisted of a disk of non-conducting material, such as pitch or resin, placed between two metal sheets, one being provided with an insulating handle. For the pitch or resin may be substituted a sheet of glass, ebonite, india-rubber or any other good dielectric placed upon a metallic sheet, called the sole-plate. To use the apparatus the surface of the dielectric is rubbed with a piece of warm flannel, silk or catskin, so as to electrify it, and the upper metal plate is then placed upon it. Owing to the irregularities in the surfaces of the dielectric and upper plate the two are only in contact at a few points, and owing to the insulating quality of the dielectric its surface electrical charge cannot move over it. It therefore acts inductively upon the upper plate and induces on the adjacent surface an electric charge of opposite sign. Suppose, for instance, that the dielectric is a plate of resin rubbed with catskin, it will then be negatively electrified and will act by induction on the upper plate across the film of air separating the upper resin surface and lower surface of the upper metal plate. If the upper plate is touched with the finger or connected to earth for a moment, a negative charge will escape from the metal plate to earth at that moment. The arrangement thus constitutes a condenser; the upper plate on its under surface carries a charge of positive electricity and the resin plate a charge of negative electricity on its upper surface, the air film between them being the dielectric of the condenser. If, therefore, the upper plate is elevated, mechanical work has to be done to separate the two electric charges. Accordingly on raising the upper plate, the charge on it, in old-fashioned nomenclature, becomes free and can be communicated to any other insulated conductor at a lower potential, the upper plate thereby becoming more or less discharged. On placing the upper plate again on the resin and touching it for a moment, the process can be repeated, and so at the expense of mechanical work done in lifting the upper plate against the mutual attraction of two electric charges of opposite sign, an indefinitely large electric charge can be accumulated and given to any other suitable conductor. In course of time, however, the surface charge of the resin becomes dissipated and it then has to be again excited. To avoid the necessity for touching the upper plate every time it is put down on the resin, a metal pin may be brought through the insulator from the sole-plate so that each time that the upper plate is put down on the resin it is automatically connected to earth. We are thus able by a process of merely lifting the upper plate repeatedly to convey a large electrical charge to some conductor starting from the small charge produced by friction on the resin. The above explanation does not take into account the function of the sole-plate, which is important. The sole-plate serves to increase the electrical capacity of the upper plate when placed down upon the resin or excited insulator. Hence when so placed it takes a larger charge. When touched by the finger the upper plate is brought to zero potential. If then the upper plate is lifted by its insulating handle its capacity becomes diminished. Since, however, it carries with it the charge it had when resting on the resin, its potential becomes increased as its capacity becomes less, and it therefore rises to a high potential, and will give a spark if the knuckle is approached to it when it is lifted after having been touched and raised.

The study of Volta’s electrophorus at once suggested the performance of these cyclical operations by some form of rotation instead of elevation, and led to the invention of various forms of doubler or multiplier. The instrument was thus the first of a long series of machines for converting mechanical work into electrostatic energy, and the predecessor of the modern type of influence machine (see Electrical Machine). Volta himself devised a double and reciprocal electrophorus and also made mention of the subject of multiplying condensers in a paper published in the Phil. Trans. for 1782 (p. 237, and appendix, p. vii.). He states, however, that the use of a condenser in connexion with an electrophorus to make evident and multiply weak charges was due to T. Cavallo (Phil. Trans., 1788).

For further information see S. P. Thompson, “The Influence Machine from 1788 to 1888,” Journ. Inst. Tel. Eng., 1888, 17, p. 569. Many references to original papers connected with the electrophorus will be found in A. Winkelmann’s Handbuch der Physik (Breslau, 1905), vol. iv. p. 48.  (J. A. F.) 


ELECTROPLATING, the art of depositing metals by the electric current. In the article Electrolysis it is shown how the passage of an electric current through a solution containing metallic ions involves the deposition of the metal on the cathode. Sometimes the metal is deposited in a pulverulent form, at others as a firm tenacious film, the nature of the deposit being dependent upon the particular metal, the concentration of the solution, the difference of potential between the electrodes, and other experimental conditions. As the durability of the electro-deposited

  1. See J. A. Fleming, Handbook for the Electrical Laboratory and Testing Room, vol. i. p. 448 (London, 1901).