Page:EB1911 - Volume 16.djvu/774

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
752
LIQUID GASES


enormously greater, at the temperature of liquid air, is the volatility of hydrogen as compared with that of nitrogen. In the same way the concentrations, for the same pressure, vary greatly with temperature, as is exemplified by table VII., even though the pressures are not quite constant. The temperatures employed were the boiling-points of hydrogen, oxygen and carbon dioxide.

Fig. 5.


Table VII.

Gas. Concentration
 in cc. per grm. 
of Charcoal.
 Pressure 
in mm.
 Temperature 
Absolute.
 Helium  97 2.2  20°
 Hydrogen 397 2.2  20°
 Hydrogen  15 2.1  90°
 Nitrogen 250 1.6  90°
 Oxygen 300 1.0  90°
 Carbon dioxide   90 3.6 195°


Table VIII.

Gas.  Concentration 
cc. per grm.
Molecular
 Latent Heat. 
Mean
 Temperature. 
Absolute.
 Helium  97  483.0  18°
 Hydrogen 390  524.4  18°
 Hydrogen  20 2005.6  78°
 Nitrogen 250 3059.0  82°
 Oxygen 300 3146.4  82°
 Carbon dioxide   90 6099.6 180°

Heat of Occlusion.—In every case when gases are condensed to the liquid state there is evolution of heat, and during the absorption of a gas in charcoal or any other occluding body, as hydrogen in palladium, the amount of heat evolved exceeds that of direct liquefaction. From the relation between occlusion-pressure and temperature at the same concentration, the reaction being reversible, it is possible to calculate this heat evolution. Table VIII. gives the mean molecular latent heats of occlusion resulting from Dewar’s experiments for a number of gases, having concentrations in the charcoal as shown. The concentrations were so regulated as to start with an initial pressure not exceeding 3 mm. at the respective boiling-points of hydrogen, nitrogen, oxygen and carbon dioxide.

Production of High Vacua.—Exceedingly high vacua can be obtained by the aid of liquid gases, with or without charcoal. If a vessel containing liquid hydrogen be freely exposed to the atmosphere, a rain of snow (solid air) at once begins to fall upon the surface of the liquid; similarly, if one end of a sealed tube containing ordinary air be immersed in the liquid, the same thing happens, but since there is now no new supply to take the place of the air that has been solidified and has accumulated in the cooled portion of the tube, the pressure is quickly reduced to something like one-millionth of an atmosphere, and a vacuum is formed of such tenuity that the electric discharge can be made to pass only with difficulty. Liquid air can be employed in the same manner if the tube, before sealing, is filled with some less volatile gas or vapour, such as sulphurous acid, benzol or water vapour. But if a charcoal condenser be used in conjunction with the liquid air it becomes possible to obtain a high vacuum when
Fig. 6.
the tube contains air initially. For instance, in one experiment, with a bulb having a capacity of 300 cc. and filled with air at a pressure of about 1.7 mm. and at a temperature of 15° C., when an attached condenser with 5 grammes of charcoal was cooled in liquid air, the pressure was reduced to 0.0545 mm. of mercury in five minutes, to 0.01032 mm. in ten minutes, to 0.000139 mm. in thirty minutes, and to 0.000047 mm. in sixty minutes. The condenser then being cooled in liquid hydrogen the pressure fell to 0.0000154 mm. in ten minutes, and to 0.0000058 mm. in a further ten minutes when solid hydrogen was employed as the cooling agent, and no doubt, had it not been for the presence of hydrogen and helium in the air, an even greater reduction could have been effected. Another illustration of the power of cooled charcoal to produce high vacua is afforded by a Crookes radiometer. If the instrument be filled with helium at atmospheric pressure and a charcoal bulb attached to it be cooled in liquid air, the vanes remain motionless even when exposed to the concentrated beam of an electric arc lamp; but if liquid hydrogen be substituted for the liquid air rapid rotation at once sets in. When a similar radiometer was filled with hydrogen and the attached charcoal bulb was cooled in liquid air rotation took place, because sufficient of the gas was absorbed to permit motion. But when the charcoal was cooled in liquid hydrogen instead of in liquid air, the absorption increased and consequently the rarefaction became so high that there was no motion when the light from the arc was directed on the vanes. These experiments again permit of an inference as to the boiling-point of helium. A fall of 75% in the temperature of the charcoal bulb, from the boiling-point of air to the boiling-point of hydrogen, reduced the vanes to rest in the case of the radiometer filled with hydrogen; hence it might be inferred that a fall of like amount from the boiling-point of hydrogen would reduce the vanes of the helium radiometer to rest, and consequently that the boiling-point of helium would be about 5° abs.

The vacua obtainable by means of cooled charcoal are so high that it is difficult to determine the pressures by the McLeod gauge, and the radiometer experiments referred to above suggested the possibility of another means of ascertaining such pressures, by determining the pressures below which the radiometer would not spin. The following experiment shows how the limit of pressure can be ascertained by reference to the pressures of mercury vapour which have been very accurately determined through a wide range of temperature. To a radiometer (fig. 6) with attached charcoal bulb B was sealed a tube ending in a small bulb A containing a globule of mercury. The radiometer and bulb B were heated, exhausted and repeatedly washed out with pure oxygen gas, and then the mercury was allowed to distil