Page:Encyclopædia Britannica, Ninth Edition, v. 24.djvu/512

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
486
WEIGHTS AND MEASURES


metretes= of 12·16 cubed, 16·8; medimnus=2 Attic talents, hecteus=20 minæ, chœnix=2 minæ, 16·75; metretes=3 cubic spithami ( cubit=9·12), 17·5; 6 metretes=2 feet of 12·45 cubed, 17·8 cubic inches for cotyle. But probably as good theories could be found for any other amount; and certainly the facts should not be set aside, as almost every author has done, in favour of some one of half a dozen theories. The system of multiples was for liquids—

cyathus 1=oxybaphon, 4=cotyle, 12=chous, 12=metretes
2·9 cub. in. 4·4 17·5 210 2520

with the tetarton (8·8), 2=cotyle, 2=xestes (35·), introduced from the Roman system. For dry-measure—

cyathus, 6=cotyle, 4=chœnix, 8=hecteus, 6=medimnus,
2·9 cub. in. 17·5    70     500    3360    

with the xestes, and amphoreus (1680)= medimnus, from the Roman system. The various late provincial systems of division are beyond our present scope (18). System of Gythium.—A system differing widely both in units and names from the preceding is found on the standard slab of Gythium in the southern Peloponnesus (Rev. Arch., 1872). Writers have unified it with the Attic, but it is decidedly larger in its unit, giving 19·4 (var. 19·1–19·8) for the supposed cotyle. Its system is—

cotyle, 4=hemihecton, 4=chous, 3 = (n). 
58 cub. in. 232       932    2796 

And with this agrees a pottery cylindrical vessel, with official stamp on it (ΔΗΜΟΣΙΟΝ, &c.), and having a fine black line traced round the inside, near the top, to show its limit; this seems to be probably very accurate, and contains 58 5 cubic inches, closely agreeing with the cotyle of Gythium. It has been described (Rev. Arch., 1872) as an Attic chœnix. Gythium being the southern port of Greece, it seems not too far to connect this 58 cubic inches with the double of the Egyptian hon = 58 - 4, as it is different from every other Greek system. Roman System.—The celebrated Farnesian standard congius of bronze of Vespasian, “mensuræ exactæ in Capitolio P. X.,” contains 206 7 cubic inches (2), and hence the amphora 1654. By the sextarius of Dresden (2) the amphora is 1695; by the congius of Ste Genevieve (2) 1700 cubic inches ; and by the ponderarium measures at Pompeii (33) 1540 to 1840, or about 1620 for a mean. So the Farnesian congius, or about 1650, may best be adopted. The system for liquid was—

quartarius, 4=sextarius, 4=congius, 4=urna, 2=amphora;
8·6 cub. ins. 34·4    206    825   1650  

for dry measure 16 sextarii = modius, 550 cubic inches; and to both systems were added from the Attic the cyathus (2 87), acetabulum (4 "3), and hemina (17 "2 cubic inches). The Roman theory of the amphora being the cubic foot makes it 1569 cubic inches, or decidedly less than the actual measures; the other theory of its containing 80 libræ of water would make it 1575 by the commercial or 1605 by the monetary libra, again too low for the measures. Both of these theories therefore are rather working equivalents than original derivations; or at least the interrelation was allowed to become far from exact. Indian and Chinese Systems.—On the ancient Indian system see Numismata Orientalia, new ed., i. 24; on the ancient Chinese, Nature, xxx. 565, and xxxv. 318.

Standards of Weight.—For these we have far more complete data than for volumes or even lengths, and can ascertain in many cases the nature of the variations, and their type in each place. The main series on which we shall rely here are those (1) from Assyria (38) about 800 B.C. ; (2) from the eastern Delta of Egypt (29) (Defenneh) ; (3) from western Delta (28) (Nancratis) ; (4) from Memphis (44), all these about the 6th century B.C., and therefore before much interference from the decreasing coin standards ; (5) from Cnidus ; (6) from Athens ; (7) from Corfu ; and (8) from Italy (British Museum) (44). As other collections are but a fraction of the whole of these, and are much less completely examined, little if any good would be done by including them in the combined results, though for special types or inscriptions they will be mentioned.

146 grains. The Egyptian unit was the kat, which varied between 138 and 155 grains (28, 29). There were several families or varieties within this range, at least in the Delta, probably five or six in all (29). The original places and dates of these cannot yet be fixed, except for the lowest type of 138-140 grains; this belonged to Heliopolis (7), as two weights (35) inscribed of "the treasury of An" show 139 9 and 140 - 4, while a plain one from there gives 138 8; the variety 147-149 may belong to Hermopolis (35), accord ing to an inscribed weight. The names of the kat and tcina are fixed by being found on weights, the uteu by inscriptions ; the series was


00, 10 = kat, 10 = uten, 10 = tcma. 14 -G gi-s. 140 1460 14,000


The tema is the same name as the large wheat measure (35), which was worth 30,000 to 19,000 grains of copper, according to Ptolemaic receipts and accounts (Rev. Eg., 1881, 150), and therefore very likely worth 10 utens of copper in earlier times when metals were scarcer. The kat was regularly divided into 10; but another divi sion, for the sake of interrelation with another system, was in ^ and , scarcely found except in the eastern Delta, where it is common (29) ; and it is known from a papyrus (38) to bo a Syrian weight. The uten is found-f-6 = 245, in Upper Egypt (rare) (44). Another division (in a papyrus) (38) is a silver weight of j-%- kat = about 88, perhaps the Babylonian siglus of 86. The uten was also binarily divided into 128 peks of gold in Ethiopia; this may refer to another standard (see 129) (33). The Ptolemaic copper coinage is on two bases, the uten, binarily divided, and the Ptolemaic five shekels (1050), also binarily divided. (This result is from a larger number than other students have used, and study by diagrams.) The theory (3) of the derivation of the uten from TsVff cubic cubit of water would fix it at 1472, which is accordant; but there seems no authority either in volumes or weights for taking 1500 utens. .Another theory (3) derives the uten from T^-J- of the cubic cubit of 24 digits, or better f of 20 63; that, however, will only fit the very lowest variety of the uten, while there is no evidence of the existence of such a cubit. The kat is not unusual in Syria (44), and among the haematite weights of Troy (44) are nine examples, average 144, but not of extreme varieties. 12Q cr- 258 f ^ no S rea t standard of Babylonia became the y^Vk . -i r r nk. parent of several other systems; and itself AC F i n and its derivatives became more widely 46o,000. n ,1 ,T i i TX spread than any other standard. It was known in two forms, one system (24) of

urn, C0=sikhir, 6 = shekel, 10 = stone, G=maneh, 60=talent,; 30 grs. 21-5 129 1290 7750 465,000

and the other system double of this in each stage except the talent. These two systems are distinctly named on the weights, and are known now as the light and,heavy Assyrian systems (19, 24). (It is better to avoid the name Babylonian, as it has other meanings also.) There are no weights dated before the Assyrian bronze lion weights (9, 17, 19, 38) of the llth to 8th centuries B.C. Thirteen of this class average 127 2 for the shekel ; 9 haematite barrel-shaped weights (38) give 128 2 ; 16 stone duck-weights (38), 126 5. A heavier value is shown by the precious metals, the gold plates from Khorsabad (18) giving 129, and the gold daric coinage (21, 35) of Persia 129 2. Nine weights from Syria (44) average 128 8. This is the system of the " Babylonian " talent, by Herodotus = 70 minse Euboic, by Pollux =70 mina; Attic, by .(Elian = 72 miiife Attic, and therefore about 470,000 grains. In Egypt this is found largely at Naucratis (28, 29), and less commonly at Defenneh (29). In both places the distribution, a high type of 129 and a lower of 127, is like the monetary and trade varieties above noticed ; while a smaller number of examples are found, fewer and fewer, down to 118 grains. At Memphis (44) the shekel is scarcely known, and a J mina weight was there converted into another standard (of 200). A few barrel weights are found at Karnak, and several egg-shaped shekel weights at Gebelen (44) ; also two cuboid weights from there (44) of 1 and 10 utens are marked as 6 and 60, which can hardly refer to any unit but the heavy shekel, giving 245. Hultsch refers to Egyptian gold rings of Dynasty XVIII. of 125 grains. That this unit penetrated far to the south in early times is shown by the tribute of Kush (34) in Dynasty XVIII.; this is of 801, 1443, and 23,741 kats, or 15 and 27 manehs and 7J talents when reduced to this system. And the later Ethiopia gold unit of the pek (7), or y-^- of the uten, was 10 - 8 or more, and may therefore be the sikhir or obolos of 21 "5. But the fraction T ^, or a continued binary division repeated seven times, is such a likely mode of rude subdivision that little stress can be laid on this. In later times in Egypt a class of large glass scarabs for funerary purposes seem to be adjusted to the shekel (30). Whether this system or the Phoenician on 224 grains was that of the Hebrews is uncertain. There is no doubt but that in the Maccabcan times and onward 218 was the shekel ; but the use of the word darkemon by Ezra and Nehemiah, and the probabilities of their case, point to the darag-maneh, ^ manch, or shekel of Assyria ; and the mention of 3 shekel by Nehemiah as poll tax nearly proves that the 129 and not 218 grains is intended, as 218 was never--- 3. But the Maccabean use of 218 may have been a reversion to the older shekel ; and this is strongly shown by the fraction shekel (1 Sam. ix. 8), the continual mention of large decimal numbers of shekels in the earlier books, and the certain fact of 100 shekels being = mina. This would all be against the 129 or 258 shekel, and for the 218 or 224. There is, however, one good datum if it can be trusted : 300 talents of silver (2 Kings xviii. 14) are 800 talents on Sennacherib s cylinder (34), while the 30 talents of gold is the same in both accounts. Eight hundred talents on the Assyrian silver standard would be 267 or roundly 300 talents on the heavy trade or gold system, which is therefore probably the Hebrew. Probably the 129 and 224 systems coexisted in the country ; but on the whole it seems more likely that 129 or rather 258 grains was the Hebrew shekel before the Ptolemaic times, especially as the 100 shekels to the mina is parallelled by the following Persian system (Hultsch)—