Page:Encyclopædia Britannica, Ninth Edition, v. 8.djvu/126

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
ELM—ELM

116 E L E C T K 0-M ETALLURGY armatures in these machines are contracted on Siemens s principle, and consist of long bars of iron magnetized transversely, and having the wire wound longitudinally. During the rotation of the armature, so much heat ig developed that special means are taken to prevent its accumulation. In another form of Wilde s machine, a vertical disk carrying a number of coils, each with its own core, is caused to rotate between tsvo rings of magnets. A powerful machine, with multiple armatures of this kind, is used by Messrs Elkington at Birmingham, and is capable of depositing i cwt. of copper every 24 hours. Another recent modification of the magneto-electric machine used by electro-metallurgists is that invented by M. Gramme. A ring of soft iron carrying a large number of coils of insulated copper wire is caused to rotate between the poles of a fixed horse-shoe magnet, and the currents induced in the coils are collected by two metallic disks, whence they may be drawn off for use in electro-deposition. As the core is circular, the magnetization proceeds con tinuously, and hence the current is uniform ; but as both poles of the magnet are used, two opposite continuous currents are simultaneously produced. Thermo-electricity is another source of electromotive power of which the practical worker has availed himself. In 1843 a patent was taken out by Moses Poole for the use of a thermo-electric pile in place of a voltaic battery, but it is only within the last few years that such a source of electricity has been introduced into the workshop. The best-known form of thermopile is that devised by M. Clamond of Paris. One element is formed of tinned sheet-iron, and the other of an alloy composed of two parts of zinc to one of antimony. A large number of these pairs, insulated from each other, are arranged in circular piles around a central cavity, in which their junctions are heated by means of a Bunsen burner. The ease with which such an apparatus can be manipulated recommends this source of electricity to the electro-metallurgist. Having procured a supply of electricity from one or other of these sources, the electro-metallurgist applies it either to the deposition of a metal upon a matrix or to the coating of one metal by another Hence the art of electro metallurgy divides itself into two branches, one being called eleclrotypy, and the other being generally known as elecf.ro- platiuy. In an electrotype the reduced metal is separated from the mould on which it is deposited, and forms a dis tinct work of art; whilst in electro-plating the deposited metal forms an inseparable part of the plated object. It has already been explained how electrotypes are generally taken. One of the most important branches of this art is that of producing copper duplicates of engravings on wood. A cast of the block is first taken in wax or in gutta-percha, and when cold the surface of this mould is brushed over with black lead ; by means of a wire, the black-leaded mould is suspended in a bath of sulphate of copper connected with a battery, and in the course of a few hours a sufficiently thick plate of copper is deposited. The copy, on removal from the mould, is strengthened by being backed with type-metal ; it is then planed smooth at the back, and mounted for use on a wooden block. This process is now carried out on a large scale, since it is found that a greater number of sharp impressions can be obtained from the electro than from the wood. For rotary printing machines the electrotypes are curved. Set-up type is also sometimes copied thus instead of being stereotyped, the electru-deposited copper being harder than the stereo metal. Copper is sometimes thrown down as a thin coating upon plaster busts and statuettes, thus giving them the appearance of solid metal. In Paris, too, it is now common to give a thin coat of electro-deposited copper to exposed iron work, such as gas-lamps, railings, and fountains. The iron is first painted, then black-leaded, afterwards electro-coppered, and finally bronzed. Cast-iron cylinders used in calico- printing are also coated with copper by a single-cell arrangement ; and it has been suggested to coat iron ships in a similar manner. Usually, however, the electro-plater has to cover the baser metals with either silver or gold. Electro-plating was introduced very soon after the dis covery of the art of electro-metallurgy, the earliest in vestigators being Messrs G. K. and H. Elkingtou, Mr Alexander Parkes, and Mr John Wright in this country, and M. de Ruolz in France. It was Mr Wright who first employed a solution of cyanide of silver in cyanide of potassium, and this is the solution still in common use. It should be borne in mind that the cyanide of potassium is a very dangerous poison. The objects to be silver-plated are usually made of German silver, which is an alloy of copper, zinc, and nickel. Before being placed in the depositing vat, the articles must be thoroughly cleansed. Grease is removed by a hot solution of caustic potash, and mechanical cleaning is commonly effected by means of a bundle of fine brass wires, known as a "scratch-brush ;" the brush is mounted on a lathe, so as to revolve rapidly, and is kept moist with stale beer. Articles of copper, brass, and German silver are usually prepared by being dipped in different kinds of " pickle," or baths of nitric and other acids. To insure perfect adhesion of the coating of silver, it is usual to deposit a thin film of quicksilver on the surface, an operation which is called "quicking." The quicking liquid may be a solution of either nitrate or cyanide of mercury. After being quicked, the articles are rinsed with water, and then transferred to the silver-bath, where they remain until the deposit is sufficiently thick. The quantity of silver must depend upon the quality of the article : one ounce of silver per square foot farms an excellent coating, but some electro-plated household goods are turned out so cheap that they must carry but the merest film of silver. The vats in which the electro-plating goes on were formerly made of wood, but are now usually of wrought iron. Plates of silver are suspended from a rectangular frame connected with the positive pole, whilst the articles to be plated are suspended by wires from a similar smaller frame communicating with the negative pole. Large articles are suspended from wires, looped at the end, and protected in tubes of glass or india-rubber, whilst small articles may be placed in wire cages or in perforated stoneware bowls. On removal from tho depositing vat, the plated objects are usually dipped in hot water, then scratch brushed with beer, again washed with hot water, and finally dried in hot sawdust. A bright silver surface, requiring no further treatment when removed, may be obtained by adding to the silver bath a very small proportion of bisulphide of carbon. Electro-gilding is effected in much the same way as electro-silvering. It is found, however, that magneto- electricity cannot be employed with advantage. Various gilding solutions are in use, but preference is usually given to the double cyanide of gold and potassium, originally introduced by Messrs Elkington. The solution is generally used hot, its temperature ranging from 130 Fahr. to the boiling-point. If the object to be gilt is not of copper, it is usual to coat it with an electro deposit of copper before submitting it to the gilding solution. The coating of gold is generally very thin, and only a few minutes exposure to the hot solution is necessary to effect its deposition. When the solution is fresh, a copper anode may be employed, its place being taken by a small gold electrode after the solution has been in work for some time. The presence of copper in the solution imparts a full reddish colour to the electro-deposit of gold ; and the tone of the metal may also

be modified by the presence of salts of various other