Page:MajoranaEmission2.djvu/2

From Wikisource
Jump to navigation Jump to search
This page has been validated.
146
Prof. Q. Majorana: Experimental Demonstration of

Michelson interferometer, with a great difference in path. Admitting the second postulate of the theory of relativity, or if, in any way, the velocity of propagation of light by earthly sources seems to us unchangeable, supposing such an apparatus were realized, a certain number f of fringes would be seen to cross the wire of the eyepiece, when the source passes from rest to velocity v,

where l is the difference of path of the interfering rays, λ the length of the wave, and c the velocity of light. This is analogous to my affirmation previously made with regard to moving mirrors. Now, the values which it is hoped may be attained in a laboratory for v are rather modest, even with regard to those of astronomical luminous sources; it is therefore necessary to give to l the highest possible value, which is only to be obtained by using a source of light with a very long visibility curve.

This can only be the green line of mercury, which, however, being more complex in its structure than the lines of cadmium, allows the observation of the fringes up to the value of l = 32 cm.[1], using excitation of vapours by means of a voltaic arc in vacuum. Besides, this source is particularly suited for the present researches because of its exceptional intensity. I believe, therefore, that they would hardly be repeated, using a different source.

I established a new plan of experiments, intending to endow with swift rotatory movement some mercurial arcs held by airless glass tubes, and to examine by means of the Michelson interferometer the light emitted by them tangentially to the trajectory line. Now in the attaining of a peripheral velocity of nearly 100 m. per second, this being the necessary velocity for a sure appreciation of a displacement in the fringes, two principal mechanical difficulties are found: the enormous centrifugal force, and the very great resistance of air. To diminish the first, it is convenient to enlarge as much as possible the diameter of the trajectory and lessen the number

  1. It must be noted that Michelson observed fringes up to l = 40 cm. But that scientist used Geissler tubes with mercury vapour; it seems that the excitation with the voltaic arc in vacuum, used by me, changes the visibility curve.