Page:MajoranaEmission2.djvu/1

From Wikisource
Jump to navigation Jump to search
This page has been validated.

Experimental Demonstration of the Constancy of Velocity of the Light
emitted by a Moving Source.


By Q. Majorana,

Professor of Physics at the Polytechnic School of Turin[1].


In a preceding paper[2] on the second postulate of the theory of relativity I described an experimental arrangement of mine by means of which I was able to demonstrate that light propagates itself with constant velocity, independently of the conditions of movement, or rest of the mirror by which the light is reflected. At the end of the above-mentioned paper I hinted at my intention of studying experimentally the eventual influence of the movement of the source on the velocity of the propagation of the light; the object of the present note is to communicate the result of these researches.

As is known, the only studies made with luminous sources in motion are astronomical ones, and those with the canal rays. Particularly with the former it has been possible to deduce the measure of the Doppler effect (and therefore the value of the velocity of displacement) for different sources, such as the fixed stars or planets and the limb of the sun. I am not aware of any attempt to prove the Doppler effect with the artificial movement of a common luminous source; the difficulty of this research consists principally in the necessity for giving a specially high rate of velocity of displacement to the source.

But even if an arrangement of this kind could be realized, its interest does not lie in the verification of the Doppler effect (change of frequency), upon which no doubt any longer exists, so much as in the control of the value of the velocity of the propagation of the light, also in the case of a moving source. This is the reason why the examination of the latter must not be made either with prisms, as in the arrangement of Belopolski, or with diffraction-gratings, as I have before explained. In making my preparations to set up an apparatus with moving source, I resolved, from the first, to examine the latter with the interference method already described by me, which is founded on the use of the

  1. Communicated by the Author.
  2. Phil. Mag. Feb. 1918, p. 163; on the same argument see also the papers of Michelson, Astrophysical Journal, xlii. p. 19 (1913), and of Fabry and Buisson, C. R. clviii'. p. 1438 (1914). These works, of which I heard only lately, arrive in different ways at the same conclusions.