Page:Nanostructural Organization of Naturally Occurring Composites Part I.pdf/7

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

7Hermann Ehrlich et al.



ACKNOWLEDGMENTS

This work was partially supported by a joint RussianGerman program “DAAD–Mikhail Lomonosov.” We thank Professor H. Lichte for the possibility to use the facilities at the Special Electron Microscopy Laboratory for highresolution and holography at Triebenberg, TU Dresden, Germany. The authors are deeply grateful to Patrice Waridel and Andrei Shevchenko (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden) for the identification of collagen in the composition of spicules, and also to Timothy Douglas, Heike Meissner, Gert Richter, Axel Mensch, and Ortrud Trommer for helpful technical assistance.

REFERENCES

[1] J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, “Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale,” Science, vol. 309, no. 5732, pp. 275–278, 2005.
[2] G. Mayer, “Rigid biological systems as models for synthetic composites,” Science, vol. 310, no. 5751,pp. 1144–1147, 2005.
[3] J. C. Weaver, J. Aizenberg, G. E. Fantner, et al., “Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum ,” Journal of Structural Biology, vol. 158, no. 1, pp. 93–106, 2007.
[4] C. Lévi, J. L. Barton, C. Guillemet, E. Le Bras, and P. Lehuede, “A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge,” Journal of Materials Science Letters, vol. 8, no. 3, pp. 337–339, 1989.
[5] W. E. G. Müller, C. Eckert, K. Kropf, et al., “Formation of giant spicules in the deep-sea hexactinellid Monorphaphis chuni (Schulze 1904): electron-microscopic and biochemical studies,” Cell and Tissue Research, vol. 329, no. 2, pp. 363–378, 2007.
[6] A. Woesz, J. C. Weaver, M. Kazanci, et al., “Micromechanical properties of biological silica in skeletons of deepsea sponges,” Journal of Materials Research, vol. 21, no. 8, pp. 2068–2078, 2006. [7] H. Ehrlich and H. Worch, “Sponges as natural composites: from biomimetic potential to development of new biomaterials,” in Porifera Research: Biodiversity, Innovation & Sustainability, M. R. Custodio, G. Lobo-Hajdu, E. Hajdu, and G. Muricy, Eds., Museu Nacional, Rio de Janeiro, Brasil, 2007.
[8] J. Aizenberg, V. C. Sundar, A. D. Yablon, J. C. Weaver, and G. Chen, “Biological glass fibers: correlation between optical and structural properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3358–3363, 2004.
[9] H. Ehrlich, T. Hanke, P. Simon, et al., “Demineralization of natural silica based biomaterials: new strategy for the isolation of organic frameworks,” BIOmaterialien, vol. 6, no. 4, pp. 297–302, 2005.
[10] H. Ehrlich, T. Hanke, H. Meissner, et al., “Nanoimagery and the biomimetic potential of marine glass sponge Hyalonema sieboldi (Porifera),” VDI Berichte, vol. 1920, pp. 163–166, 2005.
[11] H. Ehrlich, A. V. Ereskovskii, A. L. Drozdov, et al., “A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for the purpose of extraction and examination of the protein matrix,” Russian Journal of Marine Biology, vol. 32, no. 3, pp. 186–193, 2006.

[12] H. Ehrlich, M. Krautter, T. Hanke, et al., “First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera),” Journal of Experimental Zoology Part B, vol. 308, no. 4, pp. 473–483, 2007.
[13] S. Kimura and M. L. Tanzer, “Nereis cuticle collagen. Isolation and properties of a large fragment resistant to proteolysis by bacterial collagenase,” Journal of Biological Chemistry, vol. 252, no. 22, pp. 8018–8022, 1977.
[14] A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996.
[15] S. Heinemann, H. Ehrlich, C. Knieb, and T. Hanke, “Biomimetically inspired hybrid materials based on silicified collagen,” International Journal of Materials Research, vol. 98, no. 7, mbox pp. 603–608, 2007.
[16] S. Heinemann, C. Knieb, H. Ehrlich, et al., “A novel biomimetic hybrid material made of silicified collagen: perspectives for bone replacement,” Advanced Engineering Materials, vol. 9, no. 12, pp. 1061–1068, 2007. [17] J. C. Weaver and D. E. Morse, “Molecular biology of demosponge axial filaments and their roles in biosilicification,” Microscopy Research and Technique, vol. 62, no. 4, pp. 356–367, 2003.
[18] M.-J. Uriz, X. Turon, M. A. Becerro, and G. Agell, “Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions,” Microscopy Research and Technique, vol. 62, no. 4, pp. 279–299, 2003.
[19] O. Bütschli, “Einige Beobachtungen über die Kiesel- und Kalknadeln von Spongien,” Zeitschrift für Wissenschaftliche Zoologie, vol. 59, no. 2, mbox pp. 235–286, 1901.
[20] G. Croce, A. Frache, M. Milanesio, et al., “Fiber diffraction study of spicules from marine sponges,” Microscopy Research and Technique, vol. 62, no. 4, pp. 378–381, 2003.
[21] H. Ehrlich and H. Worch, “Collagen, a huge matrix in glass-sponge flexible spicules of the meter-long Hyalonema sieboldi,” in Handbook of Biomineralization. Vol.1. The Biology of Biominerals Structure Formation, E. Bäuerlein, Ed., Wiley VCH, Weinheim, Germany, 2007. [22] M. Schultze, Die Hyalonemen. Ein Beitrag zur Naturgeschichte der Spongien, Adolph Marcus, Bonn, Germany, 1860.
[23] T. Kondo, M. Nojiri, Y. Hishikawa, E. Togawa, D. Romanovicz, and R. M. Brown Jr., “Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14008–14013, 2002.
[24] J. N. Cha, K. Shimizu, Y. Zhou, et al., “Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 361–365, 1999.
[25] M. M. Murr and D. E. Morse, “Fractal intermediates in the self-assembly of silicatein filaments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11657–11662, 2005.
[26] X.-H. Wang, J.-H. Li, L. Qiao, et al., “Structure and characteristics of giant spicules of the deep sea hexactinellid sponges of the genus Monorhaphis (Hexactinellida: Amphidiscosida: Monorhaphididae),” Acta Zoologica Sinica, vol. 53, no. 3, pp. 557–569, 2007.
[27] “Sequence Database Setup: MSDB,” Imperial College London, http://www.matrixscience.com.