Page:Nanostructural Organization of Naturally Occurring Composites Part I.pdf/8

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

Journal of Nanomaterials8



[28] S. Heinemann, H. Ehrlich, T. Douglas, et al., “Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis nardo,” Biomacromolecules, vol. 8, no. 11, pp. 3452–3457, 2007.
[29] S. Hattori, E. Adachi, T. Ebihara, T. Shirai, I. Someki, and S. Irie, “Alkali-treated collagen retained the triple helical conformation and the ligand activity for the cell adhesion via α2β1 integrin,” Journal of Biochemistry, vol. 125, no. 4, pp. 676–684, 1999.
[30] M. M. Giraud-Guille, “Twisted plywood architecture of collagen fibrils in human compact bone osteons,” Calcified Tissue International, vol. 42, no. 3, pp. 167–180, 1988.
[31] M. M. Giraud-Guille, G. Mosser, C. Helary, and D. Eglin, “Bone matrix like assemblies of collagen: from liquid crystals to gels and biomimetic materials,” Micron, vol. 36, no. 7-8, pp. 602–608, 2005.
[32] W. Wagermaier, H. S. Gupta, A. Gourrier, et al., “Spiral twisting of fiber orientation inside bone lamellae,” Biointerphases, vol. 1, no. 1, pp. 1–5, 2006.
[33] B. Pokroy and E. Zolotoyabko, “Microstructure of natural plywood-like ceramics: a study by high-resolution electron microscopy and energy-variable X-ray diffraction,” Journal of Materials Chemistry, vol. 13, no. 4, pp. 682–688, 2003.
[34] H. C. Schröder, D. Brandt, U. Schloßmacher, et al., “Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine),” Naturwissenschaften, vol. 94, no. 5, pp. 339–359, 2007.
[35] C. W. P. Foo, J. Huang, and D. L. Kaplan, “Lessons from seashells: silica mineralization via protein templating,” Trends in Biotechnology, vol. 22, no. 11, pp. 577–585, 2004.
[36] C. Sanchez, H. Arribart, and M. M. Giraud-Guille, “Biomimetism and bioinspiration as tools for the design of innovative materials and systems,” Nature Materials, vol. 4, no. 4, pp. 277–288, 2005.
[37] E. Pouget, E. Dujardin, A. Cavalier, et al., “Hierarchical architectures by synergy between dynamical template selfassembly and biomineralization,” Nature Materials, vol. 6, no. 6, pp. 434–439, 2007.
[38] P. Fratzl, “Biomimetic materials research: what can we really learn from nature’s structural materials?” Journal of the Royal Society Interface, vol. 4, no. 15, pp. 637–642, 2007.