Page:Radio-activity.djvu/506

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

case of radium. The disintegration takes place in successive stages, and at most of the stages a helium atom is projected with great velocity. This disintegration is accompanied by an enormous emission of energy. The liberation of such a large amount of energy in the radio-active changes at once explains the constancy of the rate of change under the action of any of the physical and chemical agencies at our command. On this view, uranium, thorium and radium are in reality compounds of helium. The helium, however, is held in such strong combination that the compound cannot be broken up by chemical or physical forces, and, in consequence, these bodies behave as chemical elements in the ordinary accepted chemical sense.

It appears not unlikely that many of the so-called chemical elements may prove to be compounds of helium, or, in other words, that the helium atom is one of the secondary units with which the heavier atoms are built up. In this connection it is of interest to note that many of the elements differ in their atomic weight by four—the atomic weight of helium.

If the α particle is a helium atom, at least three α particles must be expelled from uranium (238·5) to reduce its atomic weight to that of radium (225). It is known that five α particles are expelled from radium during its successive transformations. This would make the atomic weight of the final residue 225 - 20 = 205. This is very nearly the atomic weight of lead, 206·5. I have, for some time, considered it probable that lead is the end or final product of radium. The same suggestion has recently been made by Boltwood[1]. This point of view is supported by the fact that lead is always found in small quantity in all uranium minerals, and that the relative proportions of lead and helium in the radio-active minerals are about the same as would be expected if lead and helium were both decomposition products of radium. Dr Boltwood has drawn my attention to the fact that the proportion of lead in many radio-active minerals varies with the content of helium. A mineral rich in helium in nearly all cases contains more lead than a mineral poor in helium. This cannot be considered, at present, more than a speculation, but the facts as they stand are very suggestive.

  1. Boltwood, Phil. Mag. April, 1905.