Page:Scientific Papers of Josiah Willard Gibbs - Volume 2.djvu/171

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

VII.

ON THE RÔLE OF QUATERNIONS IN THE ALGEBRA OF VECTORS.

[Nature, vol. xliii. pp. 511–513, April 2, 1891.]


The following passage, which has recently come to my notice, in the preface to the third edition of Prof. Tait's Quaternions seems to call for some reply:

"Even Prof. Willard Gibbs must be ranked as one of the retarders of quaternion progress, in virtue of his pamphlet on Vector Analysis, a sort of hermaphrodite monster, compounded of the notations of Hamilton and of Grassmann."

The merits or demerits of a pamphlet printed for private distribution a good many years ago do not constitute a subject of any great importance, but the assumptions implied in the sentence quoted are suggestive of certain reflections and inquiries which are of broader interest, and seem not untimely at a period when the methods and results of the various forms of multiple algebra are attracting so much attention. It seems to be assumed that a departure from quaternionic usage in the treatment of vectors is an enormity. If this assumption is true, it is an important truth; if not, it would be unfortunate if it should remain unchallenged, especiaUy when supported by so high an authority. The criticism relates particularly to notations, but I believe that there is a deeper question of notions underlying that of notations. Indeed, if my offence had been solely in the matter of notation, it would have been less accurate to describe my production as a monstrosity, than to characterize its dress as uncouth.

Now what are the fundamental notions which are germane to a vector analysis? (A vector analysis is of course an algebra for vectors, or something which shall be to vectors what ordinary algebra is to ordinary quantities.) If we pass over those notions which are so simple that they go without saying, geometrical addition (denoted by ) is, perhaps, first to be mentioned. Then comes the product of the lengths of two vectors and the cosine of the angle which they include. This, taken negatively, is denoted in quaternions by , where and are the vectors. Equally important is a vector at right angles to and (on a specified side of their plane), and