Page:System of Logic.djvu/357

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
HYPOTHESES.
351

law of the attractive force, was ascertained in this mode; by this legitimate employment of the Hypothetical Method. Newton began by an assumption that the force which at each instant deflects a planet from its rectilineal course, and makes it describe a curve round the sun, is a force tending directly toward the sun. He then proved that if this be so, the planet will describe, as we know by Kepler's first law that it does describe, equal areas in equal times; and, lastly, he proved that if the force acted in any other direction whatever, the planet would not describe equal areas in equal times. It being thus shown that no other hypothesis would accord with the facts, the assumption was proved; the hypothesis became an inductive truth. Not only did Newton ascertain by this hypothetical process the direction of the deflecting force; he proceeded in exactly the same manner to ascertain the law of variation of the quantity of that force. He assumed that the force varied inversely as the square of the distance; showed that from this assumption the remaining two of Kepler's laws might be deduced; and, finally, that any other law of variation would give results inconsistent with those laws, and inconsistent, therefore, with the real motions of the planets, of which Kepler's laws were known to be a correct expression.

I have said that in this case the verification fulfills the conditions of an induction; but an induction of what sort? On examination we find that it conforms to the canon of the Method of Difference. It affords the two instances, A B C, a b c, and B C, b c. A represents central force; A B C, the planets plus a central force; B C, the planets apart from a central force. The planets with a central force give a, areas proportional to the times; the planets without a central force give b c (a set of motions) without a, or with something else instead of a. This is the Method of Difference in all its strictness. It is true, the two instances which the method requires are obtained in this case, not by experiment, but by a prior deduction. But that is of no consequence. It is immaterial what is the nature of the evidence from which we derive the assurance that A B C will produce a b c, and B C only b c; it is enough that we have that assurance. In the present case, a process of reasoning furnished Newton with the very instances which, if the nature of the case had admitted of it, he would have sought by experiment.

It is thus perfectly possible, and indeed is a very common occurrence, that what was an hypothesis at the beginning of the inquiry becomes a proved law of nature before its close. But in order that this should happen, we must be able, either by deduction or experiment, to obtain both the instances which the Method of Difference requires. That we are able from the hypothesis to deduce the known facts, gives only the affirmative instance, A B C, a b c. It is equally necessary that we should be able to obtain, as Newton did, the negative instance B C, b c; by showing that no antecedent, except the one assumed in the hypothesis, would in conjunction with B C produce a.

Now it appears to me that this assurance can not be obtained, when the cause assumed in the hypothesis is an unknown cause imagined solely to account for a. When we are only seeking to determine the precise law of a cause already ascertained, or to distinguish the particular agent which is in fact the cause, among several agents of the same kind, one or other of which it is already known to be, we may then obtain the negative instance. An inquiry which of the bodies of the solar system causes by its attraction some particular irregularity in the orbit or periodic time of some satellite