Page:System of Logic.djvu/358

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
352
INDUCTION.

or comet, would be a case of the second description. Newton's was a case of the first. If it had not been previously known that the planets were hindered from moving in straight lines by some force tending toward the interior of their orbit, though the exact direction was doubtful; or if it had not been known that the force increased in some proportion or other as the distance diminished, and diminished as it increased, Newton's argument would not have proved his conclusion. These facts, however, being already certain, the range of admissible suppositions was limited to the various possible directions of a line, and the various possible numerical relations between the variations of the distance, and the variations of the attractive force. Now among these it was easily shown that different suppositions could not lead to identical consequences.

Accordingly, Newton could not have performed his second great scientific operation: that of identifying terrestrial gravity with the central force of the solar system by the same hypothetical method. When the law of the moon's attraction had been proved from the data of the moon itself, then, on finding the same law to accord with the phenomena of terrestrial gravity, he was warranted in adopting it as the law of those phenomena likewise; but it would not have been allowable for him, without any lunar data, to assume that the moon was attracted toward the earth with a force as the inverse square of the distance, merely because that ratio would enable him to account for terrestrial gravity; for it would have been impossible for him to prove that the observed law of the fall of heavy bodies to the earth could not result from any force, save one extending to the moon, and proportional to the inverse square.

It appears, then, to be a condition of the most genuinely scientific hypothesis, that it be not destined always to remain an hypothesis, but be of such a nature as to be either proved or disproved by comparison with observed facts. This condition is fulfilled when the effect is already known to depend on the very cause supposed, and the hypothesis relates only to the precise mode of dependence; the law of the variation of the effect according to the variations in the quantity or in the relations of the cause. With these may be classed the hypotheses which do not make any supposition with regard to causation, but only with regard to the law of correspondence between facts which accompany each other in their variations, though there may be no relation of cause and effect between them. Such were the different false hypotheses which Kepler made respecting the law of the refraction of light. It was known that the direction of the line of refraction varied with every variation in the direction of the line of incidence, but it was not known how; that is, what changes of the one corresponded to the different changes of the other. In this case any law different from the true one must have led to false results. And, lastly, we must add to these all hypothetical modes of merely representing or describing phenomena; such as the hypothesis of the ancient astronomers that the heavenly bodies moved in circles; the various hypotheses of eccentrics, deferents, and epicycles, which were added to that original hypothesis; the nineteen false hypotheses which Kepler made and abandoned respecting the form of the planetary orbits; and even the doctrine in which he finally rested, that those orbits are ellipses, which was but an hypothesis like the rest until verified by facts.

In all these cases, verification is proof; if the supposition accords with the phenomena there needs no other evidence of it. But in order that this may be the case, I conceive it to be necessary, when the hypothesis relates