Page:The Foundations of Science (1913).djvu/527

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

In the hypothesis of Abraham, the expressions are a little more complicated; but what we have just said remains true in essentials.

So the mass, the quantity of motion, the vis viva become infinite when the velocity is equal to that of light.

Thence results that no body can attain in any way a velocity beyond that of light. And in fact, in proportion as its velocity increases, its mass increases, so that its inertia opposes to any new increase of velocity a greater and greater obstacle.

A question then suggests itself: let us admit the principle of relativity; an observer in motion would not have any means of perceiving his own motion. If therefore no body in its absolute motion can exceed the velocity of light, but may approach it as nearly as you choose, it should be the same concerning its relative motion with reference to our observer. And then we might be tempted to reason as follows: The observer may attain a velocity of 200,000 kilometers; the body in its relative motion with reference to the observer may attain the same velocity; its absolute velocity will then be 400,000 kilometers, which is impossible, since this is beyond the velocity of light. This is only a seeming, which vanishes when account is taken of how Lorentz evaluates local time.


VII

The Wave of Acceleration

When an electron is in motion, it produces a perturbation in the ether surrounding it; if its motion is straight and uniform, this perturbation reduces to the wake of which we have spoken in the preceding section. But it is no longer the same, if the motion be curvilinear or varied. The perturbation may then be regarded as the superposition of two others, to which Langevin has given the names wave of velocity and wave of acceleration. The wave of velocity is only the wave which happens in uniform motion.

As to the wave of acceleration, this is a perturbation altogether analogous to light waves, which starts from the electron at the instant when it undergoes an acceleration, and which is then