Page:The Foundations of Science (1913).djvu/528

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

propagated by successive spherical waves with the velocity of light. Whence follows: in a straight and uniform motion, the energy is wholly conserved; but, when there is an acceleration, there is loss of energy, which is dissipated under the form of luminous waves and goes out to infinity across the ether.

However, the effects of this wave of acceleration, in particular the corresponding loss of energy, are in most cases negligible, that is to say not only in ordinary mechanics and in the motions of the heavenly bodies, but even in the radium rays, where the velocity is very great without the acceleration being so. We may then confine ourselves to applying the laws of mechanics, putting the force equal to the product of acceleration by mass, this mass, however, varying with the velocity according to the laws explained above. We then say the motion is quasi-stationary.

It would not be the same in all cases where the acceleration is great, of which the chief are the following:

1° In incandescent gases certain electrons take an oscillatory motion of very high frequency; the displacements are very small, the velocities are finite, and the accelerations very great; energy is then communicated to the ether, and this is why these gases radiate light of the same period as the oscillations of the electron;

2° Inversely, when a gas receives light, these same electrons are put in swing with strong accelerations and they absorb light;

3° In the Hertz discharger, the electrons which circulate in the metallic mass undergo, at the instant of the discharge, an abrupt acceleration and take then an oscillatory motion of high frequency. Thence results that a part of the energy radiates under the form of Hertzian waves;

4° In an incandescent metal, the electrons enclosed in this metal are impelled with great velocity; upon reaching the surface of the metal, which they can not get through, they are reflected and thus undergo a considerable acceleration. This is why the metal emits light. The details of the laws of the emission of light by dark bodies are perfectly explained by this hypothesis;

5° Finally when the cathode rays strike the anticathode, the negative electrons constituting these rays, which are impelled with very great velocity, are abruptly arrested. Because of the