Page:The theory of relativity and its influence on scientific thought.djvu/33

From Wikisource
Jump to navigation Jump to search
This page has been validated.
RELATIVITY
29

with) this curvature of the world around them, nor how this curvature is made subject to a law. Although it would be an entire misunderstanding of Einstein's attitude in propounding the general relativity theory to regard it as a search for an explanation of gravitation, nevertheless I think that the further following up of his ideas has led to a genuine explanation as complete as could be desired. But I am not going to give you the explanation in this lecture; sometimes an explanation requires a great deal of explaining.[1]

I think that we can without mathematics form a general

  1. The following brief outline will give a hint of the nature of the explanation. Einstein's law of gravitation is usually expressed as a set of ten very lengthy differential equations; these equations are exactly equivalent to the geometrical statement that 'the radius of spherical curvature of any 3-dimensional section of the 4-dimensional world is a universal constant length, the same for all points of the world and for all directions of the section'. The law therefore implies that the world has a certain type of homogeneity and isotropy (not, however, the complete homogeneity and isotropy of a sphere). To explain the law of gravitation and the phenomena governed by it, we have to explain how this isotropy and homogeneity is secured. Our explanation is that the homogeneity and isotropy is not initially in the external world, but in the measurements which we make of it. It is introduced in all our operations of measurement, because the appliances which we use for measurement are themselves part of the world. In the earlier part of this lecture we saw that the contraction of the arm turned from horizontal to vertical is not detected by measurements made with a yard-measure which shares the contraction; in the same way any anisotropy of the world does not appear in measurements of it by appliances which, being part of the world, share the same anisotropy. The law of gravitation therefore arises from the fact that a certain type of non-homogeneity and non-isotropy of the world cannot come into observational experience, because it is necessarily eliminated in all observations and measurements made with material appliances. The orderly phenomena of gravitation are due to the absence of certain conceivable effects. We have been trying to find a key to the mystery; but the secret of the lock lies not in the key but in the wards.