Zoonomia/I.XXIII

From Wikisource
Jump to navigation Jump to search

SECT. XXIII.

OF THE CIRCULATORY SYSTEM.

I. The heart and arteries have no antagonist muscles. Veins absorb the blood, propel it forwards, and distend the heart; contraction of the heart distends the arteries. Vena portarum. II. Glands which take their fluids from the blood. With long necks, with short necks. III. Absorbent system. IV. Heat given out from glandular secretions. Blood changes colour in the lungs and in the glands and capillaries. V. Blood is absorbed by veins, as chyle by lacteal vessels, otherwise they could not join their streams. VI. Two kinds of stimulus, agreeable and disagreeable. Glandular appetency. Glands originally possessed sensation.

I. We now step forwards to illustrate some of the phenomena of diseases, and to trace out their most efficacious methods of cure; and shall commence this subject with a short description of the circulatory system.

As the nerves, whose extremities form our various organs of sense and muscles, are all joined, or communicate, by means of the brain, for the convenience perhaps of the distribution of a subtile ethereal fluid for the purpose of motion; so all those vessels of the body, which carry the grosser fluids for the purposes of nutrition, communicate with each other by the heart.

The heart and arteries are hollow muscles, and are therefore indued with power of contraction in consequence of stimulus, like all other muscular fibres; but, as they have no antagonist muscles, the cavities of the vessels, which they form, would remain for ever closed, after they have contracted themselves, unless some extraneous power be applied to again distend them. This extraneous power in respect to the heart is the current of blood, which is perpetually absorbed by the veins from the various glands and capillaries, and pushed into the heart by a power probably very similar to that, which raises the sap in vegetables in the spring, which, according to Dr. Hale's experiment on the stump of a vine, exerted a force equal to a column of water above twenty feet high. This force of the current of blood in the veins is partly produced by their absorbent power, exerted at the beginning of every fine ramification; which may be conceived to be a mouth absorbing blood, as the mouths of the lacteals and lymphatics absorb chyle and lymph. And partly by their intermitted compression by the pulsations of their generally concomitant arteries; by which the blood is perpetually propelled towards the heart, as the valves in many veins, and the absorbent mouths in them all, will not suffer it to return.

The blood, thus forcibly injected into the chambers of the heart, distends this combination of hollow muscles; till by the stimulus of distention they contract themselves; and, pushing forwards the blood into the arteries, exert sufficient force to overcome in less than a second of time the vis inertiæ, and perhaps some elasticity, of the very extensive ramifications of the two great systems of the aortal and pulmonary arteries. The power necessary to do this in so short a time must be considerable, and has been variously estimated by different physiologists.

The muscular coats of the arterial system are then brought into action by the stimulus of distention, and propel the blood to the mouths, or through the convolutions, which precede the secretory apertures of the various glands and capillaries.

In the vessels of the liver there is no intervention of the heart; but the vena portarum, which does the office of an artery, is distended by the blood poured into it from the mesenteric veins, and is by this distention stimulated to contract itself, and propel the blood to the mouths of the numerous glands, which compose that viscus.

II. The glandular system of vessels may be divided into those, which take some fluid from the circulation; and those, which give something to it. Those, which take their fluid from the circulation are the various glands, by which the tears, bile, urine, perspiration, and many other secretions are produced; these glands probably consist of a mouth to select, a belly to digest, and an excretory aperture to emit their appropriated fluids; the blood is conveyed by the power of the heart and arteries to the mouths of these glands, it is there taken up by the living power of the gland, and carried forwards to its belly, and excretory aperture, where a part is separated, and the remainder absorbed by the veins for further purposes.

Some of these glands are furnished with long convoluted necks or tubes, as the seminal ones, which are curiously seen when injected with quicksilver. Others seem to consist of shorter tubes, as that great congeries of glands, which constitute the liver, and those of the kidneys. Some have their excretory apertures opening into reservoirs, as the urinary and gall-bladders. And others on the external body, as those which secrete the tears, and perspirable matter.

Another great system of glands, which have very short necks, are the capillary vessels; by which the insensible perspiration is secreted on the skin; and the mucus of various consistences, which lubricates the interstices of the cellular membrane, of the muscular fibres, and of all the larger cavities of the body. From the want of a long convolution of vessels some have doubted, whether these capillaries should be considered as glands, and have been led to conclude, that the perspirable matter rather exuded than was secreted. But the fluid of perspiration is not simple water, though that part of it, which exhales into the air may be such; for there is another part of it, which in a state of health is absorbed again; but which, when the absorbents are diseased, remains on the surface of the skin, in the form of scurf, or indurated mucus. Another thing, which shews their similitude to other glands, is their sensibility to certain affections of the mind; as is seen in the deeper colour of the skin in the blush of shame, or the greater paleness of it from fear.

III. Another series of glandular vessels is called the absorbent system; these open their mouths into all the cavities, and upon all those surfaces of the body, where the excretory apertures of the other glands pour out their fluids. The mouths of the absorbent system drink up a part or the whole of these fluids, and carry them forwards by their living power to their respective glands, which are called conglobate glands. There these fluids undergo some change, before they pass on into the circulation; but if they are very acrid, the conglobate gland swells, and sometimes suppurates, as in inoculation of the small-pox, in the plague, and in venereal absorptions; at other times the fluid may perhaps continue there, till it undergoes some chemical change, that renders it less noxious; or, what is more likely, till it is regurgitated by the retrograde motion of the gland in spontaneous sweats or diarrhœas, as disagreeing food is vomited from the stomach.

IV. As all the fluids, that pass through these glands, and capillary vessels, undergo a chemical change, acquiring new combinations, the matter of heat is at the same time given out; this is apparent, since whatever increases insensible perspiration, increases the heat of the skin; and when the action of these vessels is much increased but for a moment, as in blushing, a vivid heat on the skin is the immediate consequence. So when great bilious secretions, or those of any other gland, are produced, heat is generated in the part in proportion to the quantity of the secretion.

The heat produced on the skin by blushing may be thought by some too sudden to be pronounced a chemical effect, as the fermentations or new combinations taking place in a fluid is in general a slower process. Yet are there many chemical mixtures in which heat is given out as instantaneously; as in solutions of metals in acids, or in mixtures of essential oils and acids, as of oil of cloves and acid of nitre. So the bruised parts of an unripe apple become almost instantaneously sweet; and if the chemico-animal process of digestion be stopped for but a moment, as by fear, or even by voluntary eructation, a great quantity of air is generated, by the fermentation, which instantly succeeds the stop of digestion. By the experiments of Dr. Hales it appears, that an apple during fermentation gave up above six hundred times its bulk of air; and the materials in the stomach are such, and in such a situation, as immediately to run into fermentation, when digestion is impeded.

As the blood passes through the small vessels of the lungs, which connect the pulmonary artery and vein, it undergoes a change of colour from a dark to a light red; which may be termed a chemical change, as it is known to be effected by an admixture of oxygene, or vital air; which, according to a discovery of Dr. Priestley, passes through the moist membranes, which constitute the sides of these vessels. As the blood passes through the capillary vessels, and glands, which connect the aorta and its various branches with their correspondent veins in the extremities of the body, it again loses the bright red colour, and undergoes some new combinations in the glands or capillaries, in which the matter of heat is given out from the secreted fluids. This process therefore, as well as the process of respiration, has some analogy to combustion, as the vital air or oxygene seems to become united to some inflammable base, and the matter of heat escapes from the new acid, which is thus produced.

V. After the blood has passed these glands and capillaries, and parted with whatever they chose to take from it, the remainder is received by the veins, which are a set of blood-absorbing vessels in general corresponding with the ramifications of the arterial system. At the extremity of the fine convolutions of the glands the arterial force ceases; this in respect to the capillary vessels, which unite the extremities of the arteries with the commencement of the veins, is evident to the eye, on viewing the tail of a tadpole by means of a solar, or even by a common microscope, for globules of blood are seen to endeavour to pass, and to return again and again, before they become absorbed by the mouths of the veins; which returning of these globules evinces, that the arterial force behind them has ceased. The veins are furnished with valves like the lymphatic absorbents; and the great trunks of the veins, and of the lacteals and lymphatics, join together before the ingress of their fluids into the left chamber of the heart; both which evince, that the blood in the veins, and the lymph and chyle in the lacteals and lymphatics, are carried on by a similar force; otherwise the stream, which was propelled with a less power, could not enter the vessels, which contained the stream propelled with a greater power. From whence it appears, that the veins are a system of vessels absorbing blood, as the lacteals and lymphatics are a system of vessels absorbing chyle and lymph. See Sect. XXVII. 1.

VI. The movements of their adapted fluids in the various vessels of the body are carried forwards by the actions of those vessels in consequence of two kinds of stimulus, one of which may be compared to a pleasurable sensation or desire inducing the vessel to seize, and, as it were, to swallow the particles thus selected from the blood; as is done by the mouths of the various glands, veins, and other absorbents, which may be called glandular appetency. The other kind of stimulus may be compared to disagreeable sensation, or aversion, as when the heart has received the blood, and is stimulated by it to push it forwards into the arteries; the same again stimulates the arteries to contract, and carry forwards the blood to their extremities, the glands and capillaries. Thus the mesenteric veins absorb the blood from the intestines by glandular appetency, and carry it forward to the vena portarum; which acting as an artery contracts itself by disagreeable stimulus, and pushes it to its ramified extremities, the various glands, which constitute the liver.

It seems probable, that at the beginning of the formation of these vessels in the embryon, an agreeable sensation was in reality felt by the glands during secretion, as is now felt in the act of swallowing palatable food; and that a disagreeable sensation was originally felt by the heart from the distention occasioned by the blood, or by its chemical stimulus; but that by habit these are all become irritative motions; that is, such motions as do not affect the whole system, except when the vessels are diseased by inflammation.